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Grimshaw (1979) discussed the mean flow induced by an internal gravity-wave packet 
propagating in a shear flow. The present paper analyses the effect of dissipative pro- 
cesses on this problem. I n  a manner similar to that described by Longuet-Higgins 
(1953) for water waves, frictional effects in the Stokes boundary layers modify the 
mean-flow field just outside the boundary layers. Just outside the bottom boundary 
layer there is a wave-induced mean Lagrangian velocity, whose magnitude is propor- 
tional to t,he square of the wave amplitude, while just below the free-surface boundary 
layer there is a wave-induced mean-velocity gradient. In  the interior of the fluid the 
presence of dissipation in the wave field will induce a significant mean-flow field 
whenever the group velocity of the wave packet exceeds the phase speed of a long- 
wave mode. Ultimately, this interior mean flow will be modified by diffusion from the 
boundaries of effects induced in the aforementioned Stokes layers. 

1. Introduction 
The prevalence of internal gravity waves in the atmosphere and ocean has prompted 

a large amount of research. For a recent bibliography the reader may consult Gregg & 
Briscoe (1979). Although the linearized theory of these waves is now well understood, 
some of the more important consequences of int(erna1 gravity-wave activity are due 
to  nonlinear effects. One aspect of this is the interaction between internal gravity 
waves and the mean flow. I n  a previous paper Grimshaw (1979) described the mean 
flows induced by an internal gravity-wave packet propagating in a shear flow. That 
paper included and extended previous work by McIntyre (1973), Borisenko et al. 
(1976), Grimshaw (1977), Thorpe (1977) and Chimonas (1978). All these papers con- 
sidered inviscid, incompressible and stably stratified fluids. The purpose of this paper 
is again to consider an internal gravity-wave packet propagating in a shear flow, 
assuming that the fluid is incompressible and stably stratified, but including the 
effects of dissipative processes, both on waves and the mean flow. The fluid will be 
bounded below by a rigid boundary and above by a free surface. As in the previous 
work, the wave field will be calculated only for small amplitudes, and the wave- 
induced mean flow will be calculated to terms of the order of the wave amplitude 
squared. Although this may be an annoying restriction in the atmospheric or oceanic 
context, we believe it is profitable to pursue an understanding of small-amplitude 
wave-packet processes as a prelude to the development of more complicated theories. 

If dissipation is measured by a small parameter E (an inverse Reynolds number), 
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then the dissipative processes which act on the wave field are confined to Stokes 
boundary layers of width Et adjacent to each boundary. The bottom boundary layer 
produces a frictional decay rate for the wave field whose non-dimensional time scale 
is E-3; the free-surface boundary layer and the interior produce decay rates on a time 
scale E-l. Our result for the decay rate due to friction in the bottom boundary layer 
generalizes earlier results by Le Blond (1966) and Wunsch (1969). I n  this paper i t  will 
be assumed that the principal dissipative process acting on the waves is due to the 
bottom boundary layer, and consequently the time scales associated with the wave 
packet are a t  most O(E-4). The case when the fluid is sufficiently deep for the waves 
to  be unaffected by the bottom boundary layer requires a different analysis from that 
considered in this paper and will be discussed elsewhere. 

For the special case of water waves propagating on the free surface of a homo- 
geneous fluid, Longuet-Higgins (1953) showed that frictional effects in the E j  Stokes 
boundary layers profoundly modify the mean-velocity field. He showed that just 
outside the bottom boundary layer there is a wave-induced mean velocity which acts 
as a bottom boundary condition for the interior mean-flow equations. Just outside 
the free-surface boundary layer there is a wave-induced mean-velocity gradient which 
acts as a free-surface boundary condition for the interior mean-flow equations. In  this 
paper we derive the analogous results for internal gravity waves, and find, not un- 
expectedly, that, within and just outside the Stokes layers, the wave-induced mean- 
velocity field has the same structure as that for water waves. I n  addition, however, 
we calculate the corresponding results for the mean-density field, both for the case 
when the full-density field is prescribed a t  the boundary, and for the case when the 
density flux is prescribed a t  the boundary. For the case of water waves, the existence 
of both the wave-induced mean streaming a t  the bottom and the wave-induced mean 
vorticity at the free surface has been verified in the laboratory (Russell & Osorio 1957; 
Longuet-Higgins 1960, respectively). For internal gravity waves there seems no 
a priori reason to suspect that the analogous wave-induced effects could not also be 
verified in the laboratory. 

Finally, we discuss the evolution of the mean-flow field induced by a propagating 
internal gravity wave packet. Following the procedure used by Grimshaw (1981) for 
the special case of water waves, the mean-flow field is decomposed into an ‘inviscid’ 
part, and boundary-layer corrections whose role is to adjust the ‘inviscid’ part to the 
boundary conditions described in the previous paragraph; the width of this boundary 
layer is (E/e)&,  where e-l measures the long time scale associated with the wave packet. 
These boundary-layer corrections are described by diffusive processes whose penetra- 
tion distance after a time t has elapsed since the arrival of the wave packet is (EZ)*. 
This description of the mean flow field is valid for times O(e-l), and is appropriate for 
either an isolated wave packet, or the early stages of the mean-flow field induced by a 
uniform wave train. 

I n  the absence of dissipative processes within the wave field the solution for the 
‘inviscid’ part of the mean-flow field is described by Grimshaw (1979), where i t  was 
shown that if the basic shear flow contains no spatial or temporal inhomogeneities the 
wave-induced mean-flow field is proportional to the square of the wave amplitude. 
An important exception t o  this occurs when there is a long-wave resonance so that 
the group velocity of the wave packet equals the phase speed of a long-wave mode. In  
this paper we show that the presence of dissipative processes within the wave packet 
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will produce exponential growth in the mean-flow fields whenever the group velocity 
of the wave packet exceeds the phase spced of the long wave mode. This rather sur- 
prising result requires a re-examination of the mechanism by which the wave packet 
and its induced mean flow are generated; it transpires that free long-wave modes are 
also generated which partially annul the aforementioned exponential growth. How- 
ever, in the region immediately behind the wave front and before the arrival of the 
free long-wave modes, the mean-flow field will begin to amplify. There is a transfer of 
energy from a low-mode-number wave packet to high-mode-number long waves. This 
is a potentially important mechanism in the oceanic context, as it provides a dynamic 
link between low-inode short waves with high vertical coherence to the weak shearing 
motions associated with long waves with low vertical coherence (Voronvich, Leonov 
& Miropol'skiy 1976). A similar mechanism may be significant for the atmospheric 
boundary layer (Chimonas 1978). 

The plan of this paper is that in $ 2  the equations of mot'ion are formulated using 
the generalized Lagrangian-mean formulation of Andrews & McIntyre (19784.  In  $ 3 
the wave field is described, the Stokes layers analysed, and the equation for wave 
action derived. I n  4 we derive the equations for the mean flow field, and present the 
calculations which describe the way that frictional effects in the Stokes layers modify 
the mean-flow field. Finally, in $ 5  we discuss the evolution of the mean-flow field 
induced by a propagating wave packet. 

2. Generalized Lagrangian-mean formulation 
The Eulerian equations of motion for an incompressible fluid are 

where 

(2.1 a)  

(2 . lb)  

(2.1 c )  

( 2 . l d )  

Here ui are the velocity component's, p is the density, p is the pressure, G is the Prandtl 
number, t is the time and xj are Eulerian Cartesian co-ordinates; the subscript i takes 
the values 1, 2 or 3, and the x; axis is the vertical axis. The variables are non- 
dimensional, based on the length scale L (a typical wavefength), a time scale Ny1, 
where ATl is a typical value of the Brunt-VLisiLla frequency, and a pressure scale 
p l g L ,  where p1 is a typical value of the density. Then the parameter p is N2,Lg-' and 
is small in the Boussincsq approximation, while the parameter E is p(pl N1L2)-', 
where p is the viscosity. I n  subsequent sections it will be assumed that E is a small 
parameter, and the effects of dissipation are confined to boundary layers. F,(x;, t )  is a 
force field, and Q(x;,t) is a heat source; they are included to ensure that the basic 
flow field may be chosen arbitrarily. 

It is convenient in the subsequent analysis to distinguish between horizontal 
12-2 
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co-ordinates x: (a = 1 , 2 )  and the vertical co-ordinate z’ = xi by employing Greek 
indices for horizontal variables, while retaining Latin indices for all three co-ordinates ; 
similarly, u, are the horizontal velocities and w = u3 is the vertical velocity. It will be 
assumed that the fluid occupies a horizontal channel, bounded below by a rigid 
boundary z’ = - h(x:), and above by t,he free surface z‘ = c(& t). At the rigid boun- 
dary the boundary conditions are 

ui = 0 on z’ = -h(x&), 

p = pR on 2‘ = -h(xh), 
and either (i) 

or (ii) 

(2.2a) 

(2 .2b)  

(2 .2c )  

Here, m; denotes the unit outward normal to the boundary, while pR(x;,t) and 
HR(x&, t) are prescribed functions; the boundary conditions (i) or (ii) correspond t o  
prescribing the bottom temperature or heat flux respectively. At the free surface 
the boundary conditions are 

on z’ = c(xh,t), ac ac - + u a y  = w at ax, 
(2.3a) 

(2 .3b )  

( 2 . 3 ~ )  

and either 

(i) p = pF on z’ = c(xh,t), (2 .3d)  

or 
(ii) on ( 2 . 3 e )  

Here, n; denotes the unit outward normal to the boundary, while 7 i y )  are tangential 
vectors; pF(xh, t )  and HF(x;, t) are prescribed functions, and the boundary conditions 
(i) or (ii) correspond to  prescribing the surface temperature or heat flux respectively. 
P(xh, t) is a prescribed pressure distribution, and S(x;, t )  represents a prescribed shear 
stress. 

To describe modulated waves we introduce the Eulerian phase O(xh, t), and assume 
that if $ is any field variable (i.e. ui, p ,  p or 5) then 

$(xi t )  = $(xi, t) + $’(xi, t ;  O), (2.4) 

where $’ is periodic in O with period 2n and zero mean. Further, we shall assume that 
$‘, the Eulerian wavelike perturbation, is O(a), where a is a small parameter measuring 
the wave amplitude. I n  contrast, $, the Eulerian mean, is composed of an O(1) basic 
flow, and an O(a2) wave-induced component. We define the averaging operator to be 
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Now, instead of substituting expressions such as (2.4) into the equations of motion, 
we shall follow the procedure of Grimshaw (1979), and use the generalized Lagrangian- 
mean-flow formulation of' Andrews & McIntyre (1 978a, b).? We shall give only a brief 
outline of this procedure here, referring the reader to  the publications quoted above 
for further details. Let xi be generalized Lagrangian co-ordinates and let &(xi, t )  be 
the particle displacements defined so that 

x; = Xi+&. (2.6) 

(2.7) 

Then we define a Lagrangian-mean operator by 
- 
$%i, t )  = ($(Xi + t i ,  t ) ) .  

Next', we impose the condition that 
(0 = 0, 

which ensures that the co-ordinates xi move with the Lagmngian-mean velocity iit, 
whereas the co-ordinates xi move with the true velocity ui. Since ti is wavelike and 
O(a),  we may put 

where now @xi, t )  is the Lagrangian phase, and 4, the Lagrangian wavelike perturba- 
tion, is periodic in 0 with period 2n and zero mean. The difference between the 
Lagrangian mean $IJ and the Eulerian mean $ is the Stokes correction $s. Substituting 
(2.6) in (2.4), i t  follows that 

$(Xi, t )  = $"(Xi, t )  + &Xi, t ;  @, (2.9) 

( 2 . 1 0 ~ )  

6 = $'+Ei-+O(a2). (2.10b) axi 

Further, we note the useful relation 

and so 

Let J be the Jacobian of the transformation: 

J = det -' . [:;I 
Then it, may be shown that, using (2 . la) )  

Next, let K i j  be the (i , j) th cofactor of J :  

( 2 . 1 1 ~ )  

(2.11 b )  

(2.12) 

(2.13) 

(2.14) 

t This formulation has some conceptual advantages and also aids considerably in the tech- 
nical details of the analysis, particularly with respect to the free surface and when there is a 
basic shoar flow. 
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It may be shown that 

Using these relationships, ( 2 . 1  c )  becomes 

( 2 . 1 5 a ,  b )  

(2 .16)  

A similar procedure may be followed for ( 2 . 1  b ) ,  which we first multiply by ax;/axi: 

Here 7 = t3 is thevertical particledisplacement. I n  these equations the prescribed fields 
Fi and Q remain functions of xi, t but the dependent variables are all functions of xi, t .  

At t'he rigid boundary the boundary conditions ( 2 . 2 )  become 

Tit+& = 0 on z = -h(x,), 

(i) p = pR on z = -h(x,), 
and either 

or aP 
axi (ii) -mi = /3Hn on z = -h(x,). 

( 2 . 1 8 ~ )  

( 2 . 1 8 b )  

(2 .1  8 c )  

Here mi denotes the out>ward normal to the boundary. At the free surface, boundary 
condition ( 2 . 3 a )  states that the boundary is a material surface and hence becomes 
z = [L(x,,t), while = 0 (Grimshaw 1979);  since EL is convected with the mean flow, 
i t  follows that 

( 2 . 1 9 )  

The remaining boundary conditions ( 2 . 3 )  become 

1 2 E  aui Kir KisKitnsnt - P 
- - p + - -  on z = cL(xa,t), ( 2 . 2 0 a )  

p J ax, P P 

or (ii) -- /3HT on z = [L(xa,t), ( 2 . 2 0 d )  ap K i j  l i i knk  = 
~ a ~ ,  ./lr 

where 
Jc' = [Kql~qmnlnn~'. ( 2 . 2 0 e )  

The governing equations are now ( 2 . 1 2 ) ,  ( 2 . 1 3 ) ,  (2.16) and ( 2 . 1 7 ) .  The next step is 
to  separate these equations into their mean and perturbed parts, using the averaging 
operator ( 2 . 5 ) .  We shall not display the details of this procedure here. Instead the 
reader is referred to the general treatment of Andrews & McIntyre ( 1 9 7 8 u ) ,  or to 
Grimshaw ( 1 9 7 9 )  where the present problem in the absence of dissipative processes is 
discussed. 
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The manipulation of the terms introduced by the presence of dissipative processes is 
described by Grimshaw ( 1 9 8 1 )  for the special case of a homogeneous fluid. I n  per- 
forming the separation of the equations, and also the boundary conditions, into their 
mean and perturbed parts, the reader should note that two of the technical advantages 
of the generalized Lagrangian-mean formulation are the simplicity of the convective 
derivative (cf. (2 .11  a, b ) )  and the fact that the free surface is a mean quantity. 

Thus we put 
p = PL+PpI ,  ( 2 . 2 1 a )  

ui = ?zF + ai, where 41i = a& - ( 2 . 2 1 b )  
at ’ 

(2 .21 c )  
a p  

p = p + 9 ,  9 = pp++ti-. axi 
Applying the averaging operator to  the equations and boundary conditions leads to  
a set of equations for iiL, EL,  j j L  and EL. Subtraction of these averaged equations from 
the original equations then provides the equations for the perturbed quantities &, 
j3 and p+; note that we find it useful to  work with p+ rather than 8, where p+ differs 
from the Eulerian perturbation p’ by O(a2) quantities. We shall make further sim- 
plifications by presenting the mean equations only to O(a2), and the perturbed 
equations only to O(a).  I n  addition we shall suppose that the basic flow, denoted by 
the subscript 0, is a function of z only, and is characterized by the horizontal velocity 
u o a ( z ) ,  and the density po(z). The Brunt-Vaisala frequency N ( z )  is defined by 

( 2 . 2 2 )  

Also we shall assume that uo3 or wo is identically zero, that the channel depth h is a 
constant, and that co is zero. The case when the basic flow varies on length and time 
scales long compared with the wavelength and period of the perturbations is discussed 
by Grimshaw ( 1 9 8 0 ) .  Thus we put 

( 2 . 2 3 ~ )  

(2 .23  b )  

(2 .23c ,  d )  

Here the notation implies that 
is a mean quantity, and hence 

etc. are O(a2) quantities. Now ( 2 . 1 3 )  implies that J 

where 

Next i t  may be shown from ( 2 . 1 6 )  that 

( 2 . 2 4 ~ )  

(2.24 b )  
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( 2 . 2 5 b )  

(2.25d) 

Here Pi is the pseudomomentum (Andrews & McIntyre 1978a), and W i  (2.253) is 
just that forcing term which would remain in the absence of dissipation; represents 
the terms due to dissipation. Similarly from (2.16) it may be shown that 

The boundary coiiclit.ions for these mean-flow equations are, a t  the rigid boundary, 

and either 

or 

- u&=O on z = - h ,  

(i) p k = O  on x = - h ,  

( 2 . 2 7 ~ )  

(2.273) 

(ii) - a z  - - 0  on z = - k .  ( 2 . 2 7 ~ )  
32 

At the free surface the boundary condition (2.19) becomes 

-- D" -Gg on z =  0. (2.28) 

We shall not display the mean form of the boundary conditions (2.20) as the full 
expressions are rather lengthy. Instead we refer the reader to Grimshaw (1981) where 
these boundary conditions are derived for the case of a homogeneous fluid. Also the 
reader will note that we have not attempted to further simplify the expressions 
involving KmkKT,L3 in (2 .25d) and (2.26); the details of this simplification are given by 
Grimshaw (1980). 

Dt 

The equations for the O(a) perturbed quantities are 

a&, - = O(a2), (2.29a) 
ax, 
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where 

( 2 . 2 9 d )  

The boundary conditions for the perturbed quantities are, at the rigid boundary, 

and either 
c , = O  on z = - h ,  

(i) p ^ = O  on z = - h ,  

( 2 . 3 0 ~ )  

(2.30 b)  

86 ( 2 . 3 0 ~ )  (ii) - = 0 on z = -h .  
a2 

or 

At the free surface the boundary conditions are 

aa auOa a7 
az az ax, 

/3p++po9+2E =O(a2)  on z = O ,  

and either 
(9 p^ = O(a2) on z = 0, 

or 

( 2 . 3 1 ~ )  

(2.31 b )  

(2.31 c )  

(2.31d) 

3. Modulated waves 

of the following form : 
In this section we shall seek an asymptotic solution to the perturbation equations 

Q = a { ~ ~ ) ( X a , T ; z ) + e ~ ~ ) ( X , , T ; z ) + O ( e 2 ) } e x p i B + c . c . ,  ( 3 . 1 ~ )  

p+ = a{p(0)(Xa, T ;  z )  + ep(l)(XE, T ;  Z )  + O(e2)} exp i B  + c.c., (3 . lb)  

p^ = U{~(~)(X,,T;Z)+E~(~)(X,,T;Z) +0(e2)}expiB+c.c., ( 3 . 1 ~ )  

0 = K,X, - wt, x, = ex,, T = E t .  (3 . ld ,  e )  
where 

Here C.C. denotes the complex conjugate. These expressions describe a modulated 
wave packet of local frequency w and wavenumber K,, whose amplitude varies on 
time and length scales which are long compared to the local period and wavelength 
respectively. This separation of scales is here represented by the small parameter E .  

A more general treatment than that presented here, in which the basic state also 
varies on these long time and length scales, is described by Grimshaw ( 1  980). 

In this and subsequent sections, we shall assume that E is O(e2) ,  and we shall verify 
a posteriori that this hypothesis is consistent for waves which propagate in a channel 
of finite depth (for waves in a deep fluid ( h + a )  the appropriate scaling for E is O ( E ) ;  
this case will be discussed elsewhere). It follows then that in the interior the effects of 
dissipation are O(e2),  and the analysis in the interior is similar to that described by 
Grimshaw (1979). It is being assumed here that the stratification N 2  and the basic 
shear auo/az are O( 1) with respect to the present scaling. If either of these conditions 
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are violated, for example by the presence of interior interfaces across which either the 
density or basic shear flow is discontinuous, then a different theory is needed. If such 
interfaces model situations where p,(z) and u,(z) change significantly over a vertical 
scale O(E9) then these interfaces will require Stokes boundary layers similar to those 
discussed below (see Dore 1969, 1970). Note that in the O(a)  perturbation equations 
we can replace the mean flow by the basic flow. Thus p(O) = 0, and 

(3.2b) 

( 3 . 2 ~ )  

(3 .2d)  
where 

Here A is an amplitude, undetermined at  t,his stage, and Q, satisfies the differential 
equation 

- 
W = W-K,U0, .  

Boundary conditions for 4 will be determined by matching the expansions (3.1) with 
boundary-layer expansions at  each boundary. A t  the next order in c it may be shown 
that the interior equations for ~ ( l )  and p(l) are 

(3.4b) 

(3.4C) 

The full boundary conditions cannot be satisfied by the solution (3.2), which is an 
inner solution, and must be supplemented by Stokes boundary-layer solutions at 
x = 0 and z = - h. The analysis of these boundary layers is similar to that described 
by Longuet-Higgins (1953) and Grimshaw (1981) for water waves, and by Wunsch 
(1969) for a special case of internal gravity waves. Consider the rigid boundary first. 
The boundary-layer thickness is E* and so we introduce the boundary-layer variables 

(3.5) 

Substituting these variables into the perturbation equations (2.29), we find that the 
leading terms in the boundary-layer equations are 

(3.6,) 

(3.6b) 
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( 3 . 6 ~ )  

(3 .6~2)  

I n  these equations po etc. are evaluated a t  z = - h, and we have put uo = 0 a t  x = - h. 
The boundary conditions are 

and either 
[,*,r* = O  on z* = 0, (3.7a) 

- 0 on z* = 0. ( 3 . 7 b )  (i) p* = 0 or (ii) - - aP* 
a x  * 

The matching conditions with the interior ~olut~ion are 

Equation ( 3 . 6 ~ )  and the matching condition (3.8) show that p* = p(O) within the 
boundary layer, where pC0) is evaluated at z = -h. Next, we seek a solution of ( 3 . 6 b )  
for [ z  propor-tional to expie, satisfying t>he boundary condition ( 3 . 7 ~ )  and the 
matching condition (3.8). The result is 

where 

Here [Lo) is evaluated at  x = -h .  7" can now be found from ( 3 . 6 ~ )  and ( 3 . 7 ~ ) :  

6: = a[~o)exp(i~){l-exp(-yx*)}+c.c., (3.9 a,) 

y = Iwpol:exp(-airrsgnwj. (3.9b) 

[ 1 - exp ( - yz*)] 7* = - a i K , ~ ~ o )  exp ( i ~ )  I,* - - 
\ Y  

The matching condition (3.8) now shows that 

(3.10) 
1 

(3.1 1 a )  

(3.11 b )  

Thus the outcome of this boundary-layer expansion is to supply a boundary condition 
for both q5 and $I). Note that the st'ructure within t'he boundary layer for 6: and 7" 
is identical to that for a progressing water-wave packet. For p*, the solution of (3.6d ) 
which satisfies the boundary condit'ion (3.7b) and the matching condit,ion (3.8) is 

aapo exp i B  { 
UP0 - 1 

iK;[koi) ( p* = P0NZ- exp ( - yx*) - C, exp 

(3.1212) 
where 

(i) C, = i or (ii) C, = (gpo)*. 

Next, the free-surface boundary-layer variables are defined by 

( 3 . 1 2 b )  

(3.13) 
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where the superscript (i) denotes the interior solution, defined by (3.1). The use of the 
same notation for both boundary layers should cause no confusion, as the context 
will make i t  clear which boundary layer is being considered. The boundary-layer 
equations are 

(3.14 a )  

(3.14b) 

(3.14 c) 

(3.14d) 

Here u etc. are evaluated a t  z = 0. The matching conditions now require that 
[ z ,  q*, :* and p*+O as z*+ - co. The boundary conditions are deduced from (2.31) 
and are 

-pp(i)+po$) = O(c2) on z = 0, ( 3 . 1 6 ~ )  

and either 
(i) E ~ P * + @ )  = O(c2) on z = 0, ( 3 . 1 5 ~ )  

or ap* 
(ii) - + - p o N 2  = O(B)  on x = 0. 

az* a2 
(3.15d) 

The boundary condition ( 3 . 1 5 ~ ~ )  involves only interior variables, and it follows that 

(3.16 a) 

(3.16 b )  

Thus the outcome of this boundary condition is to supply a boundary condition for 
both q5 and @), where we recall that (3.4a) relates p(l)  and q(l). Next, we find 52 from 
(3.14 b) and the boundary condition (3.15 b )  : 

52 = iB,exp (i8)exp(yoz*)+ c.c., 
Yo 

where 

(3.17 a) 

(3.17 b) 

yo = (SSp,ltexp(-&insgnG) on x = 0. (3.1 7 c) 

q* may then be determined from ( 3 . 1 4 ~ ) :  

iK,B,exp (i8) exp (yoz*) 

POG 
- +c.c. I” = (3.18) 
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Finally, p* is found from (3.14d) and the boundary condition ( 3 . 1 5 ~  or d ) .  Thus, 

or 

p* = C, exp (iB) exp ((g;J - + C.C., 

where 

I on x = 0, 

on z =  0. (ii) C, = - -poN2-  (V,)* 
Yo az 

( 3 . 1 9 ~ )  

(3.19b) 

Further, p* may be found from ( 3 . 1 4 ~ ) .  
We have now established that $ ( z )  satisfies (3.3) with boundary conditions (3.1 1 a )  

and ( 3 . 1 6 ~ ) .  These constitute aneigenvalue problem for # ( z ) ,  where w is the eigenvalue 
and K, is regarded as a fixed parameter. This eigenvalue problem determines both 
$ ( z )  and the dispersion relation w = w(K,) .  We shall assume that, for real K,, w is real 
and that G does not vanish within the flow domain; a sufficient condition for this is 
that the local Richardson number be everywhere greater than 4 (Banks, Drazin & 
Zaturska 1976). I n  general, there will be a number (possibly infinite) of such modes, 
and we shall select just one particular mode. 

Turning next to the O(s)  terms, we see that @) and p(l)  satisfy (3.4a, b )  and the 
boundary conditions (3.11 b )  and (3.16 b).  A necessary and sufficient condition that 
this inhomogeneous problem have a solution is the compatibility condition 

This condition is derived by using the method of variation of parameters to solve 
(3.4a, b) and then applying the boundary conditions. It may then be shown that 
(3.20) can be written in the form 

( 3 . 2 1 ~ )  
a d  a 
- + - ( C d ) + A d =  0, aT ax, 

where 

(3.216, c) 

(3.21 d )  

Here d is the complex wave action; is the group velocity. I n  the absence of dissipa- 
tion, A is zero, and (3.21 a )  is the equation for conservation of wave action (cf. Grimshaw 
1979, where a discussion is given of this equation). The coefficient A is the friction 
coefficient, which describes the dissipation in the bottom boundary layer and justifies 
the scaling E of O(e2) .  This term has a positive real part and so describes decay of wave 
action. Note that this term arises solely from the velocity boundary layer, and the 
density boundary layer plays no role in the dissipation (cf. Le Blond 1970). 

We shall close this section by displaying two explicit examples, for each of which 
uoa is zero. The first example describes the surface-wave mode for which c is O(p-a). 
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(u,) Surface wave mode: 

/?W2 = Ktanh ~h +o(/?), 

( 3 . 2 2 ~ )  

(3.22 b )  

( 3 . 2 2 ~ )  

(3.22d) 

When N 2  = 0,  these expressions, without the error terms, are exact. The second 
example has N Z  = constant, and uses the Boussinesq approximation. 

(b )  N 2  = constant: 

(m = 1 , 2 , 3 ,  ...), ( 3 . 2 3 ~ )  

EJ 2 y ( ~ n n / h ) ~  A = -  
€ K2 + (mn/h)" 

The value of A agrees with that obtained by Le Blond (1966). 

(3.23b, c) 

(3.23d) 

4. Evolution of the mean flow 
Now that the perturbation variables are known to O(U) from (3.3), ( 3 . 1 1 ~ )  and 

(3.16a), with the amplitude A determined from (3.21a),  the forcing terms in the 
mean-flow equations may be evaluated to O(a2). The mean-flow equations are (2.24a), 
( 2 . 2 5 ~ )  and (2.26), with the boundary conditions (2.27), (2.28) and the mean of (2.20). 
I n  the interior, since E scales with e2, 9: is O($),  and the dominant contribution to 
the forcing terms in (2.22 b )  comes from gj; t'fais calculation was made by Grimshaw 
(1979) and so we shall just quote the result here. Similar comments apply to the other 
mean-flow equations. Further, since the forcing terms are O(a2) and are functions of 
X u ,  T and z ,  we shall assume that the mean-flow fields ?iii etc. are functions of X u ,  T 
and z ;  i t  is then necessary to rescale WL to eWg. The interior mean-flow equations are 
then 

(4.1 a )  

(4 . lb)  

( 4 . 1 ~ )  

(4.1d) 
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Here we have included some terms O(E/e )  in these mean-flow equations, in anticipa- 
tion of the fact that, just outside the Stokes boundary layers, the mean-flow equations 
cont'ain boundary layers of thickness (E/e)* (Grimshaw 1981). The pseudomomentum 
is given by 

2K, % 
w 

P=- ,  ( 4 . 2 ~ )  

where 

(4.2b) 

Note that po X is the kinetic energy density, and 2p0 X,J is the wave-action density 
whose integral across the channel defines the wave action d' (3.24b). 

The Eulerian mean flow is found by computing the Stokes corrections ( 2 . 1 0 ~ ) .  
Thus, for example, 

p: = 2pa23tr-pu21A12poN2q52, (4.3b) 

(4.3c) 

The Eulerian mean vertical velocity Z? is most simply found from the Eulerian mean 
of the continuity equation (2 . la) .  

I n  the Stokes boundary layer a t  the rigid boundary, the forcing terms in the mean- 
flow equation are evaluated from ( 3 . 9 ~ ) )  (3.10) and ( 3 . 1 2 ~ ) .  Since the perturbation 
variables now depend on the boundary-layer variable z* ( 3 4 ,  the mean-flow variables 
will likewise depend on z*. Turning first to  the mean-flow equation (2.25u), we find 
that, to  leading order, 

p" = pa2iA12(,(2P,N242)-~2z(Po'V2)). a a 

(4.4) 

while the boundary condition is (2.27a), or 
- 

u:, = 0 on z* = 0. (4.5) 

The matching condition is that aU~,/az*+O as z*-+oo, since aUk,/az is O(a2) in the 
interior, but O(u2E-*) in the boundary layer. Integrating (4.4), we find that 

-L U 2 a - 7 U  - W K a  2 A  I I {~-4e~p(-y~~: : )+$exp(- (2Rey)z*)+c .c . ) .  (4.6) 
K 

Next, letting z*+oo in (4.6), and matching with a limit as z-f - h from the interior, 
we deduce that 

(4.7) 

Equation (4.7) provides the bottom-boundary condition for the interior mean-flow 
equation ( 4 . 1 ~ ) .  Not surprisingly, the term in brackets in (4.6) is identical with the 



362 R. Grimshaw 

corresponding result for water waves (Grimshaw 1981), which was first obtained by 
Longuet-Higgins (1953). Within the boundary layer the Stokes velocity is 

+ ( -  2 + isgn w )  exp ( -  yz*) + exp ( -  ( y + y )  z * )  + c.c.), (4.8) 

Next, we turn to the vertical componentr of the mean-flow equation (2.22a), and to 
and, from this and (4.6), the Eulerian mean velocity is readily found. 

leading order this is 

But, within the boundary layer, t'he Stokes correct'ion is 

Thus the Eulerian mean pressure V 2  is constant across the boundary layer, and can 
be matched directly to the interior solution. The vertical velocity G: can be found 
from ( 2 . 2 4 ~ )  and the boundary condition ( 2 . 2 7 ~ )  that iZk = 0 on z* = 0 ;  matching 
with the interior solution shows that 

lim iijt = 0,  
2-t-h 

(4.1 1) 

which is also a bottom boundary condition for the interior mean flow. Finally, the 
equation for pk in the boundary layer is deduced from (2 .18~) ,  and is 

(4.12U) 

where 

The boundary conditions are given by (2.27c), and are either 

or 

(i) p? = 0 on x* = 0, ( 4 . 1 3 ~ )  

(ii) - - - 0 on z* = 0. (4.13 b )  a x  * 
I n  case (i), jik is O(E$) ,  and matching with the interior solutions shows that 

(i) lim i jk  = 0. 
z+-h 

(4.14) 

This is the bottom boundary condition for the interior mean-flow eqiiation (4.lb). 
The O(E4) term in ii$ may now be calculated from ( 4 . 1 3 ~ ) ;  we shall not display the 
result here, but refer the reader to  Kelly (1970), where the special case of' uOa zero and 
N 2  constant was discussed. I n  case (ii) 

pk = lim pk + E$p*, - 

Z+-k 

where 
ap* 
ax* 

a---+a(9R-Y,,(x* = 0 ) )  = 0. (4.15) 
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Matching with the interior solution now gives the bottom boundary condition in 
case (ii) for the interior mean-flow equation (4.2b), 

(4.16) 

Both results (4.14) and (4.16) may be confirmed by using an Eulerian calculation. 
For the free-surface boundary layer the forcing terms are evaluated from (3.17a), 

(3.18) and ( 3 . 1 9 ~ ) .  Following the method used for the perturbation variables, z* is 
now defined by (3.13), and we put 

where the superscript (i) denotes the interior solution, defined by (4.1). Next, evaluat- 
ing Bi (2 .25b)  and B?? (2.25c), we find that, to leading order, 

(4.18b) 

The matching conditions with the interior now are that iiz and p* tend to zero as 
z*+ -a. The boundary conditions are obtained from (2.31a, b) .  To leading order, 
they are 

-bpt(i)+pock = o on z = 0, ( 4 . 1 9 ~ )  

Integrating ( 4 . 1 8 ~ )  once, and then applying the boundary condition (4.19b) leads to 
the following equation: 

(4.20) 

This equation is one of the free-surface boundary conditions for the interior mean- 
flow equations (4.1). I n  the special case of water waves and when au,,/az is zero on 
z = 0 (i.e. the prescribed shear stress S is zero), it reduces to the boundary condition 
obtained by Longuet-Higgins (1953), or Grimshaw (1981). It should be noted that 
the scaling introduced in (4.17) for does not carry over to the Eulerian mean 
velocity. Thus, although the boundary-layer correction to Tit') is O(E4) as (4.17) 
implies, the boundary-layer correction to the Eulerian mean Z$A is O(1);  this is most 
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readily established by computing the Stokes velocity in the boundary layer. Conse- 
quently, the computation of the counterpart of (4.19) for Eulerian means is much 
more difficult than the preceding analysis. Other free-surface boundary conditions 
are (4.190) and (2.28). 

Finally, the equation for j5* in the boundary layer is deduced from ( 2 . 2 6 ~ )  and is 

where 

The boundary conditions arc given by ( 2 . 2 0 ~  or d ) ,  and are either 

(i) &(i)-p,,N2[? = o on z = 0,  

( 4 . 2 1 ~ )  

(4.21 b )  

(4.22a) 

I n  case (i), the free-surface boundary condition for the interior solution is given 
immediately by ( - 1 . 2 2 ~ ~ ) ;  p* may be found from (4.21 a) but we shall not display the 
result here. I n  case (ii), aj5*/&* is found from (4.21a), and then the boundary con- 
dition (4.228) implies that 

which is now a free-surface boundary condition for the interior solution. Note that in 
deriving (4.20), (4.220) or (4.23) it is not necessary to make any assumptions con- 
cerning the relative order of magnitude of the small parameters E i  and a. This con- 
trasts favourably with an Eulerian formulation of the free-surface boundary layer, 
and is an advantage of using a Lsgrangian formulation. 

Before proceeding in s 5  to a discussion of some consequences of these mean-flow 
equations i t  must again be pointed out that we are assuming that N 2  and au,,/az are 
O( 1 )  with the present scaling, and consequently Stokes layers are needed only a t  the 
free surface and the rigid bottom boundary. If either of these conditions are violated 
by the presence of an interior interface where either the density or basic shear flow is 
discontinuous, then a different theory is needed; Dore (1970) has shown that just out- 
side the Stokes layers at such interfaces there will be wave-induced mean velocity 
gradients O(nZE-:), significantly larger than the mean-velocity gradient (4.20) 
induced at the free surface. 
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5. Discussion 
The interior mean-flow equations are (4.1 a-d), with the boundary conditions a t  

the rigid boundary (4.7), (4.11) and either (i) (4.14) or (ii) (4.16). For the convenience 
of the reader these boundary condit,ions are reproduced below: 

( 5 . 1 ~ ~ )  

- 
w k = O  on z = - h ,  (5.16) 

and either 
(i) j# = 0 on z = - h ,  (5 . lc )  

or 
(5.1 d )  

The free-surface boundary conditions are (4.19a),  (4.20), (2.28) and either (i) ( 4 . 2 2 ~ )  
or (ii) (4.23). These are 

- , @ k + p O [ k = o  on Z = O ,  ( 5 . 2 ~ )  

(5.2~5) 

( 5 . 2 ~ )  

(i) jjt = p o N 2 [ i  on z = 0, (5 .2d)  

I n  the mean-flow equations and boundary conditions the amplitude IAI can be 
regarded as known, determined from the wave-action equation (3.21 a) .  

For time scales T 2~ O( 1)  it is convenient to separate the solution of the mean-flow 
equations into an ‘inviscid’ part and a boundary-layer correction. The ‘inviscid ’ part 
satisfies the mean-flow equations (4.1 a-d) with the omission of the viscous terms 
proportional to E/e (which are of relative O(s )  for this ‘inviscid’ part), and the boun- 
dary conditions (5.16), ( 5 . 2 ~ )  and (5.2b). This ‘inviscid’ part is discussed by Grimshaw 
(1979) when the wave-action equation contains no dissipative term (i.e. A +  0 ) .  The 
role of the boundary-layer correction is to adjust this ‘inviscid’ part to  satisfy the 
remaining boundary conditions, by retaining the terms proportional to E/e  in (4.2 b, c), 
and so introducing a boundary layer of width (E/s)& adjacent to each boundary (this 
boundary layer should not be confused with the Stokes layers of $3,  whose width is 
E t ) .  This three-layer structure has been described in detail for water waves by Grim- 
shaw (1981) and for interfacial waves by Dore & Al-Zanaidi (1979). The middle layer, 
the boundary layer of width (E/c)d,  arises from the balance between the viscous 
terms in the mean-flow equations and the acceleration term whose time scale is e-l 
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and is imposed by the wave-packet time scale. It differs from the three-layer structure 
which arises when the middle layer is a balance between the viscous term and the 
inertial terms ( O(sa4) here) which is often invoked in discussions of standing waves; 
of course for sufficiently large amplitudes such a layer would be needed (Dore 1977) .  

For simplicity we shall suppose that the wave packet is propagating and being 
modulated only in one direction so that K, = ( K ,  0) and V,  = ( V ,  O ) ,  where K ,  w and 
hence V are constants. An appropriate solution of the wave-action equation ( 3 . 2 4 ~ )  
is then 

\A12 = F(T)exp -- , (5.3a) ( sf) 
where 

(5 .3b )  T = T - - ,  6 = R e A .  

This solution describes the generation of a wave a t  X = 0 by a wave-maker F ( T ) .  We 
shall further suppose that F(T)  = 0 for T < 0, so that the wave packet is set up from 
a state of rest. It is useful in the subsequent discussion to make reference to the 
following special choices for F(T)  

X 
V 

( a )  F(T) = S(T)’ (5 .4a)  

( b )  Ic”(T) = fw), (5.4b) 

where 6(T) is the Dirac delta function, and H(T) is the Heaviside function (case (a) is 
the time derivative of case ( b ) ) .  Case (a )  is a model of an isolated wave packet, while 
case ( b )  describes the generation of a uniform wave train. 

For the remainder of this section, we shall denote the X-component of ?ita by a:, 
and the Y-component by 5:’ with similar definitions for the basic flow. We shall use 
a superscript I to denote a solution of trhe ‘inviscid ’ part of the mean-flow equations, 
and a superscript B to  denote the boundary-layer correction. Thus 

iit = E I + u B ,  etc. (5 .5 )  

The solution of the ‘inviscid’ part of the mean-flow equations is then given by (cf. 
Grimshaw 19791 

where 

(5.6a, b,  c )  

(5.6d) 

( 5 . 6 e )  

and now 
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The boundary conditions for this inviscid part of the mean-flow equations are (5.1 b) ,  
( 5 . 2 ~ )  and (5 .2b) ,  and reduce to  

$ = O  on z = - h )  ( 5 . 7 4  

(5.7b) 

Qj = $ at z = 0. (5.7c) 

The equation to  be solved is thus just (5.6e) for $ with the boundary conditions 
( 5 . 7 ~  and b ) ,  with IAI2 given by ( 5 . 3 ~ ) .  Note that, althoughthese ‘inviscid’equations 
contain no viscous terms for the mean-flow field, the effect of dissipation on the wave 
field is retained. 

The equations for the boundary-layer corrections are obtained from (4.1 a-d ) by 
introducing a boundary layer of thickness ( E / E ) *  and using standard boundary-layer 
approximations. I n  both boundary layers, the relevant equations are 

The pressure pB 2: O(E/t-) in the boundary layers, and WB is given by 

( 5 . 8 ~ )  

(5.8b) 

( 5 . 8 ~ )  

(5.9) 

depending on whether the bottom or free-surface boundary layer is being considered. 
For the bottom boundary layer, the boundary conditions are ( 5 . 1 ~ )  and ( 5 . 1 ~  or d ) ,  
which become 

(5.1 0 a )  

UR = 0 
and either 

(i) jP = 0 

on x = - h ,  (5.10b) 

on z = - h ,  ( 5 . 1 0 ~ )  

or 
(5.10d) 

Note that, for the boundary conditions (5.10b) c ) ,  we have used (5.6a, c )  and ( 5 . 7 ~ ) .  
The boundary condition ( 5 .  lob)  shows that En N 0 in the bottom boundary layer and, 
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in case (i), ( 5 . 1 0 ~ )  shows that 
shows that pn is O((E/e)&) .  The free-surface bonndary conditions are 

21 0 ;  for case (ii), the boundary condition ( 5 . 1 0 d )  

(5.1 1 a )  

and either 

(i) j j B =  0 on x = 0,  ( 5 . 1 1 ~ )  

The boundary conditions (5.lIa, b )  show that UB and VB are O((E / s )J )  in the free- 
surface boundary layer and, in case (i), ( 5 . 1 1 ~ )  shows that p B  N 0 while, in case (ii), 
(5.1ld) shows that ;?B is O((E /e ) t ) .  Equations (5 .8~ -c )  describe the diffusive process 
whereby the effect of the boundary conditions, either ( 6 . 1 0 ~ - d )  or (5.11 a-d), pene- 
trates into the interior; the penetration distance after a time 5? is O((El?/e)+) .  Thus 
the 'inviscid' equations (5 .6e)  etc. are valid only up to  times p N O(e /E) ,  when they 
are modified by the boundary-layer corrections. On the diffusive time scale 

Further progress now depends on solving the interior equation (5.6e) with the 
boundary conditions (5 .7a,  b) .  First, we consider the special case of water waves when 
N2 = 0 and uo = 0; the wave field is described by ( 3 . 2 2 ~ - d ) .  With 1,412 given by 
( 5 . 3 ~ )  it is appropriate to introduce a Laplace transform with respect to p, 

0 ( 1 / E ) ,  a different analysis, based on ( 5 . 2 ~ - e ) ,  is needed. 

and put 

(5.12b) 

Note t,hat>, in cases ( a )  and ( b )  ((5.4a, b ) ) ,  g ( F )  is unityand s-lrespectively. Thenfis 
given by 

6X 
-Y($) = &, 4 W F )  exp ( -y). 

(8  + 8) W sinh 2K(Z  + h)  K sinh 2K(Z + h)  
= v s  sinh2 ~h $- sinh2 K h  

(5.13) 
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It can be shown that t,his agrees with the result obtained by Grimshaw (1981). For 
case ( b ) ,  when 9 ( F )  = 1, the result for UI is, for p > 0, 

Since (h//3)* (the long-wave phase speed) is greater than V ,  both the time-dependent 
terms decay as F+CC (for each fixed X ,  this is equivalent to T e r n ) .  Indeed after a 
time rr"l s: O(e/E) ,  which is the time for the boundary-layer corrections to penetrate 
into the interior, the latter two terms in (5.14) may be neglected, and only the first, 
time-independent term remains. Further this term consists of the Stokes correction 
iis (the first term), and a z-independent velocity field which ensures that, for steady 
flow, there is zero net mean flow (i.e. r- hUI dz = 0). For further discussion of this special 
case the reader is referred to Grimshaw (1981). 

Next, suppose that N 2 ( z )  + 0, but that there is no basic shear flow, so that uo = 0. 
I n  this case the solution for $ may be found by expanding in the long-wave modes 
$:), where n = 0,1,2, ... . For a given long-wave phase speed @), these satisfy ( 3 . 3 ~ ) ,  
and the boundary conditions ( 3 . 1 1 ~ )  and ( 3 . 1 6 ~ )  in the limit K + O .  Hence 

(5.15a) 

4;) = 0, z = -h, (5.15 b )  

These modes are complete, and we normalize them so that 

where 

(5.15 c )  

(5.16) 

( 5 . 1 7 ~ )  

We shall adopt the convention that n = 0 describes the surfaee-wave mode, for which 
tho) = (h//3)$+ 0(/3$), and $iO) = P&( 1 + z / h )  ( 1  + 0(/3)). It may now be shown that 

(5 .18b)  
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X X 

FIGURE 1 .  The domain of dependence of a point in the (p ,  X)-planc when 
(a)  V < c:); ( b )  TJ > c:'. 

If we now follow the same procedure used for water waves in the preceding paragraph, 
i t  follows that 

The Laplace transform has poles a t  s = -S(1 T I'/cL"))-l and, in case ( b ) ,  also a t  
s = 0. It is a simple matter to invert the Laplace transform, and for case (6) the result 
for U I  is 

(5.20 a )  

where 

The corresponding solution for case (a )  may be obtained by taking a derivative with 
respect to T of (5.20a, b) .  

I n  commenting on this solution we first observe that in the absence of friction 
(6 = 0) the solution may be obtained from (5.20b) by putting S = 0, when b, is pro- 
portional to (AI2. If S > 0 and V < I$') both the terms in b, (5.20b) decay as F+m,  
and after a time N O ( e / E ) ,  UI will be effectively zero, and the mean-flow field will 
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consist only of the boundary-layer corrections. If V = cg), then there is a long-wave 
resonance between the wave packet and the interior mean flow, and a different theory 
from that described in this paper is needed (cf. Grimshaw 1977). If V > c;), the first 
term in b, (5.20b) grows exponentially as T-too. The reason for this growth can be 
found by re-examining (5.18a) for ( I , ‘  (or the corresponding equation for bn) .  This is a 
hyperbolic equation whose characteristics are X T c g ) T  = const., or 

(5.21) 

When V < cg) ,  both sets of characteristics have negative slope in the (p,X)-plane, 
and consequently the domain of dependence of a point in F ,  X > 0 can only contain 
points in X > 0 (cf. figure l a ) ;  in this case, with [A12 given by (5 .3a) ,  the correct 
solution in X > 0 is indeed (5.20b).  However, if V > c::), the first characteristic in 
(5.21) has a positive slope in the (p, X)-plane, and consequently the domain of depen- 
dence of a point in 5?, X > 0 may contain points in X < 0 (ef. figure 1 b ) .  Now the 
expression (5.3a) for IAI2 is valid only in X > 0 and, since the domain of dependence 
may intercept the X = 0 axis, the solution (5.20b) must be amended by examining 
local conditions at  the wavemaker. A complete discussion of this is beyond the scope 
of this paper, and so we shall model these local conditions by supposing that IAI2 is 
given by (5.3a) in X > 0, and is zero in X < 0. The solution of (5 .18~)  can then be 
found by taking a Laplace transform with respect to T and solving the resulting 
ordinary differential equation in X for 9(u,) .  The result for case ( b )  in X > 0 is again 
(5.20b),  but now supplemented by a free long wave, propagating to the right with 
speed c::), which exactly annuls the exponentially growing term at  X = 0. Thus, if 
v > c;’, 

(5.22) 

This solution is now exponentially growing with respect to T for each fixed X only in 
the region c2)T < X < V T ,  but overall there is now no amplification. The exponent 

(-!z 6p ) v 1- v / c p  
varies from -6T at  the onset of the wave packet (X = VT or p = 0) to zero at 
X = cg’T, after which the free long wave annuls the amplification. Nevertheless, in 
contrast to the case V < cg),  a significant mean flow is generated behind the wave 
front. I n  figure 2 we show a plot of b, as a function of X for a special, but representative, 
case for both V 2 cc). 

An alternative explanation of the difference between the two cases is that when 
V < cg) the wave packet is subcritical with respect to the free long waves of phase 
speed cg) and only the forced solution of (5 .18~)  is relevant. However, when V > c$) 
the wave packet is supercritical with respect to the free long waves, one of which 
must be invoked to maintain a bounded flow a t  X = 0. I n  both cases the exponents 
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- -  

0.2 0.4 

FIGURE 2. A plot of b,, as a function of X for T = 1 ,  2. (a )  K = &r, V = 0.23, c$A = 0.16. 
( b )  K = n, V = 0.11, = 0.16. In both cases, --- is a plot of bzm(T = O), which is propor- 
tional to exp (-SX/B). We have set N = 1, h = 1, m = 1 and E = e2 = 

in (5 .20b)  and (5.22) can be put in the form 

From (5.21) i t  follows that each exponent is constant along a characteristic. This 
observation suggests the following interpretation of our solution for b,. At a fixed 
station X, the solution for b, is formed by long waves which propagate from the wave 
front ( p  = 0). When V < I$), it is apparent from figure 1 (a )  that, as 5! increases with 
X fixed, these long waves are generated from regions where the wave amplitude is 
becoming exponentially small; hence the exponential decay in (5.20 b) .  I n  contrast, 
when V > cg) ,  one of these long waves is generated upstream (q.v. figure 1 b )  where the 
wave amplitude grows exponentially; hence the exponential growth. As stated above, 
when this characteristic intercepts X = 0, a free long wave must be invoked. 

Note that, for a given value of V ,  V > cg) only for those long waves whose mode 
number n is greater than the mode number of the wave packet, but it can always be 
met for a sufficiently large value of the long wave mode number n as cg)+ 0 as n+m, 
provided only that (MI - c$') M2 + c',")~ M3) is non-zero. There is a significant transfer of 
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energy from a low-mode-number wave packet to high-mode-number long waves, 
whenever the wave packet is subject to frictional decay (S > 0). Note that the long- 
wave resonance V = @' occurs whether 6 = 0 or not, but the present mechanism 
requires the effect of fTiction. Finally we note that the turning on of the wave maker 
at T = 0 can be expected to  generate free long waves of all speeds I$), but these will 
not be exponentially growing in time and should not be confused with the long wave 
present in ( 5 . 2 2 ) .  

To illustrate the foregoing comments, we consider two special cases. First suppose 
that N2 = const. in the Boussinesq approximation. Then the modal function is given 
by ( 3 . 2 3 a ,  b) .  The only long-wave mode generated has n = 2m, and we find that 

while 
1 M, = - (m) 2 4  2 m n K ) ' ,  

V (mn/h)2 
c (mn/h)2' 
- =  

(5 .23  a)  

( 5 . 2 3  b)  

( 5 . 2 3  c )  

There is mean-flow amplification and ( 5 . 2 2 )  holds whenever 

V > c,$i or (Kh/mn)2 < 44 - I .  

I n  figure 2 we show a plot of b,,, for this special case, which is nevertheless 
representative. 

Next consider the surface-wave mode defined by ( 3 . 2 2 a ,  b )  as p+0. I n  this limit we 
find that 

V ($4 K 

h tanh Kh - hi sinh 2 ~ h  

Since (h/P)) is greater than V ,  both these terms decay as !i"+co, and are just the last 
two terms of the expression for GI (5.14) obtained for water waves when N2 0. The 
remaining terms, n = 1 , 2 , 3 ,  ..., all have V > c::), as for the surface-wave mode V is 
O(p-*), while c g )  are O( 1 ) .  Thus ( 5 . 2 2 )  holds, and we find that &Il and &I3 are O(1) wit,h 
respect to p, but &I2 is O(p-i ) ,  and is given by 

~ W K  cosh ~ K ( X  + h)  
sinh2 K h  

ax. 

Since c g ) / V  is O ( p i ) ,  for times f' N 0(1), the exponential terms 

( 5 . 2 5 )  

in ( 5 . 2 2 )  are approximately unity, the series ( 5 . 2 0 a )  may be summed, and the result 
is exactly (5.14). However, for times p N O(p-&), the exponentially growing term in 
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(5.22) must be retained, and the solution for UI will amplify in the manner described 
above. Thus, although, when iV2 = 0, UI for water waves is given by (5.14) and, as 
p-+ co, 31 reduces to a steady flow given by the first term in (5.14), we now see that, 
when N 2  $0 ,  this term is only steady for times 5? 2: 0(1) and, for times 5! N O(p-*), 
uI is given by ( 5 . 2 0 ~ )  and (5.22); there is a transfer of energy from the surface-wave 
mode to long internal waves as V > cf) for all the long-internal-wave modes, 
n = 1 , 2 , .  . . . Of course, the boundary-layer corrections will modify the interior 
mean flow for times 5! N O ( c / E ) ,  and the preceding discussion pertains to the case 
E / e  < ,!?* < 1.  

In  the general case when P ( x )  $ 0  and uo(z)  f 0, an expansion in long-wave modes 
is no longer feasible. However, a Laplace transform of (5.6e) with respect to 
indicates that there is a solution of the form (5.12b), with poles at s = S(V/c(O)- l)-l, 
where c(O)is the phase speed of any long-wave mode. Thus again there will be exponen- 
tially growing terms for V > do), and the necessity for invoking the presence of a free 
long wave to annul these terms at  the wave maker. Furt’her, since for a solution of the 
form (5.12b) the operator D/DT is transformed into- 

- 

the transformed equation (5.6 e )  will have a critical level singularity whenever 
s = 6( V/uo - l)-l, and these will also lead to exponentially growing terms whenever 
V > uo. We shall not pursue this general case any further, as the analysis is very 
complicated and outside the scope of this paper. Before proceeding to discuss the 
boundary-layer corrections, we note that, when S is zero, a solution for $ can be found 
proportional to 

The boundary-layer corrections are governed by the equations (5.8a-c) with the 
boundary conditions (5.10a-d) a t  the bottom, or (5.11a-d) at the free surface. The 
boundary-layer equations are diffusion equations, whose solution is standard. For 
the special case of water waves, the solution has been discussed in detail by Grimshaw 
(1981). A similar analysis pertains to the general case considered here. Thus, in the 
bottom boundary layer, where we have put uo equal to zero, the appropriate solution 
of ( 5 . 1 0 ~ )  is 

( 5 . 2 6 ~ )  

this case has been discussed by Grimshaw (1979). 

- uB(5!, X, x )  = Jo’K(P - T’, 2,) Li iB(T’ ,  X ,  - h) dT’, 
8T‘ 

where 

(5.26b) 

( 5 . 2 6 ~ )  

With the integrand of (5.26a) known from the boundary condition (5.10a), this 
solution describes the diffusion of the boundary-layer correction through the boun- 
dary layer. In the bottom boundary layer VB N 0,  and for case (i), jP N 0;  for case (ii) 
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Considering now only the case N 2  $ 0  and uo = 0,  for which $is described by ( 5 . 2 0 ~ ) )  
i t  can be shown that, as l?+co, for case ( b )  (5 .4b )  

where 

Y n  = 
1 -- 

C p  

(5.28b) 

Here the subscript’ [ 

appropriate solution of (5.10a) is 

denotes a quantity evaluated at  z = - h. 
I n  the free-surface boundary layer, we shall a t  first suppose that u,, = 0. Then the 

ZF = -z(!!)f. (5.293) 

When U I  is described by ( 5 . 2 0 ~ )  it can be shown that, as P+m, for case (b )  (5.4b) 

(5.30) 

There are similar solutions to ( 5 . 2 9 ~ )  for VB and PB in case (ii), while in case (i) P B  N 0. 
If uo =t= 0 at  the free surface, but uo/V < 1, then there is a similar solution to  ( 5 . 2 9 ~ ~ ) .  
But, if uo/V > 1 a t  the free surface, the diffusive character of the boundary-layer 
solution disappears, and it would seem that the decomposition into ‘inviscid’ terms 
and a boundary-layer correction is not valid. Indeed in this latter case there will be a 
critical level singularity in the interior mean-flow equations whose resolution will 
require the retention of the viscous terms in the interior. 

(5.5) as a function of z for various 
times 5? and a fixed value of X ,  using the special case when the wave field is described 
by ( 3 . 2 3 ~ - d ) ,  and U I  is given by (5.20a),  (5.22) (ie.  when V > c$g) ,  and (5 .23~-c ) .  
For this same special case, figure 2 ( a )  gives a plot of the amplitude of UI as a function 
of X .  We note here that the ratio of U?, the wave-induced mean velocity, to  a, the 
horizontal velocity of the wave field, when evaluated at  the bottom, z = - h, has a 
magnitude 5aJAJ mn/h for this special case. Thus, even for waves of only moderate 
amplitude, the mean velocity may be of magnitude comparable to the fluctuating 
velocity, and should be a readily observable quantity. Similarly, it is apparent from 

I n  figure 3 we show a plot of the profile of 
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FIGURE 3. A plot of 6: as a function of z, for K = +z, when I.' = 0.23, c!; = 0.16; -- T = 1 
and X = 0.2, --- T = 2 and X = 0.4. We have set N = 1, h = 1, m = 1 and E = ez = 

figure 3 that the mean reverse flow in the interior of the fluid is of comparable magni- 
tude, and should likewise be a readily observable quantity. For the special case of 
water waves Russell & Osorio (1957) have verified in the laboratory Longuet-Higgins' 
(1953) result for the wave-induced mean streaming a t  the bottom (5.1 a) .  For internal 
gravity waves there seems no a p ~ i o r i  reason to suspect that the analogous result 
could not be verified in the laboratory. Again for the special case of water waves, the 
wave-induced mean vorticity at the free surface ( 5 . 2 ~ )  has been verified in the labora- 
tory by Longuet-Higgins (1960). However, the analogous result for internal gravity 
waves may be more difficult to detect in the laboratory as in the absence of a basic 
shear flow the wave-induced mean vorticity is 0(pa2), where B is the Boussinesq 
parameter. In  the interior the experiments of Russell & Osorio (1957) for water waves 
showed that there was reasonable agreement between the theory and the observations 
(Grimshaw 1981). For internal gravity waves the comments made above concerning 
the predicted magnitude of Ti? suggest that the analogous experiment would be 
capable of providing a test of the theory. 

The solutions described in this section are valid for time scales E O(1).  This is 
appropriate for isolated wave packets as the forcing terms are restricted to times 

E O(1) (cf. (5.4a)), and for the initial stages of the mean-flow evolution due to  the 
passage of a uniform wave train ( 5 . 4 b ) .  However, in this latter case, the mean flow 
will continue to evolve on longer time scales as the boundary layers penetrate further 
into the interior and, on a time scale for which is O ( e / E ) ,  the mean-flow field will 
evolve to a state which must be determined from the full set of equations ( 4 . 2 ~ - d ) .  
This process is described in detail for the special case of water waves by Grimshaw 
(1981), where it is shown that the mean flow field evolves to a steady state. However, 
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in the general case considered here, it is not obvious a priori that the mean flow field 
will always evolve to a steady state, as we have shown in previous paragraphs of this 
section that there are circumstances (e.g. V > c g ) )  in which the interior mean-flow field 
does not reach a steady state. The complete elucidation of the subsequent behaviour 
of the mean-flow field is beyond the scope of this paper, and we hope to consider this 
problem elsewhere. 
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